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Abstract
States are considered as dynamically stable if they are invariant under a time
automorphism and depend smoothly on a perturbation of the dynamics. We
study the consequences for finite systems and compare it with the consequences
in infinite systems. With an appropriate definition of smoothness it is shown
that states that are dynamically stable are equilibrium states. In contrast to
previous results we do not need strong asymptotic Abelianess.

PACS number: 05.30.−d

1. Introduction

For finite systems equilibrium states are given as Gibbs states with the density matrix ρ =
e−βH /Tr e−βH where the operator H implements the time evolution. In the thermodynamic
limit neither the Hamiltonian converges to an observable nor can the state be described by
a density matrix. What remains is the analyticity property of the time correlation functions
expressed as the KMS condition referring to the inverse temperature β [1–3]. States that
satisfy this KMS condition are therefore considered to be equilibrium states. In [4] dynamical
stability was introduced as a concept that should explain what singles out equilibrium states
from other time invariant states without referring to thermodynamical ideas as temperature or
entropy and how in the thermodynamic limit such equilibrium states are just the KMS states,
characterized by a temperature. In this concept they demanded that equilibrium states on
the global i.e. macroscopic size be time invariant, but in addition should not be effected by
small local perturbations of the dynamics in the sense that for a sufficiently small perturbation
there exists a unique state invariant under the perturbed dynamics and close in norm to the
original state, so that the system can react on the local perturbation without being effected
globally. With the additional assumption, that the time evolution is norm asymptotically
Abelian [4] succeeded to prove that this suffices that the state has to be a KMS state for some
temperatures. Assuming asymptotic Abelianess was justified by the observation that it holds
for free particles (in the case of fermions only for the even subalgebra) and the hope that
interactions should not be able to create correlations over large times that would dominate
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the spreading of the wavepackets over large times. There exists hardly any time evolution
for which we can control the long-time behaviour apart from quasifree evolutions, with the
exception of the XY -model. Here we can find the exact behaviour for all times [5, 6], since by
a Jordan–Wigner transformation [7] the time evolution coincides with a quasifree evolution
on the even algebra and can be extended to the whole algebra. As a consequence, on the even
algebra the time evolution is again asymptotically Abelian, however for the extension this
fails. Since the Hamiltonian is in no sense exceptional this is a strong indication that hoping
for strong or even norm asymptotic Abelianess in realistic models is too optimistic.

A little bit later than [4], in [8] another concept was used to describe equilibrium states.
In [8] the states have been considered that are passive in the following sense: as a perturbation
of time evolution is slowly switched on, the state is disturbed only microscopically, and when
the perturbation is switched off again, the system has gained energy. This assumption is in
correspondence to the second law of thermodynamics. Therefore, contrary to the concept of
dynamical stability, passivity does not contribute to our understanding of why thermodynamic
holds for macroscopic systems. It merely relates thermodynamic behaviour with equilibrium.
The fact that we are dealing with infinite systems can be taken care of by considering space
translations which commute with time translation, and the invariance of the state under space
translations. No further assumptions on the dynamics were necessary. This was sufficient to
prove that passive states are KMS states thereby showing that the concept of temperature is a
consequence of the second law of thermodynamics.

Here we want to concentrate on dynamical stability but apply the methods which have
formally been applied in the context of passivity. We assume that the state is dynamically
stable and first examine the consequences for a finite system: the density matrix corresponding
to the stable state has to commute with the Hamiltonian. We assume that we switch on the
perturbation adiabatically. If the perturbation is sufficiently small there is no need to take
care of level crossing, every eigenvector of the density matrix will evolve separately so
that the weight of the subspaces will be unaltered. We obtain a unique perturbed state if the
degeneracy of the initial density matrix coincides with the degeneracy of the Hamiltonian. Thus
the density matrix has to be a function of the Hamiltonian. Passivity for finite-dimensional
systems works similarly but reduces the permitted functions to convex functions. For an
infinite system we have to take into account that the difference between the eigenvalues of the
Hamiltonian will tend to zero in the thermodynamic limit. Therefore adiabatic perturbation of
the eigenvectors cannot be applied. In [9] adiabatic theory for the scattering operator replaced
it, but the existence of a scattering operator again relies on the assumption of asymptotic
Abelianess which we now do not expect to be available. Nevertheless dynamical stability
corresponds to that we assume we stay in the same representation, since the system is not
effected globally by the perturbation, and that in correspondence to adiabatic perturbation
theory the vector implementing the invariant state changes smoothly and uniquely. To first
order we find a unique relation between perturbation of the dynamics and perturbation of
the vector that implements the invariant state in the GNS construction. Mimicking ideas of
[8] we will add invariance with respect to space translation to the list of assumptions. For
passive states this invariance reduced the possible convex functions of the Hamiltonian to the
KMS condition with positive temperature. Also in our situation the possible functions of the
finite-dimensional situation are again reduced to KMS states, however without restrictions on
the sign of the temperature. In fact, this cannot be expected since we have not specified a time
direction.

In the appendix we give the arguments, why the time evolution of the XY -model is not
asymptotically Abelian.
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2. Dynamical stability for finite-dimensional algebras

We start with an algebra A isomorphic to Mn and acting on a Hilbert space of dimension n. Its
time evolution τt is given by a Hamiltonian H = ∑n

i hi |φi〉〈φi | such that τt (A) = eiHtA e−iHt .

Definition 1. A state ω(A) = Tr ρA is called dynamically stable with respect to τt if it satisfies
the following conditions:

(i) The state is invariant under the dynamics τt .
(ii) There exists some λ0 ∈ R+ such that ∀λ, |λ| < λ0 and all A = A∗ ∈ Awith ‖A‖ = 1 there

exists a unique state ωλA unitarily equivalent to ω that is invariant under the perturbed
dynamics τλA

t induced by eit (H+λA).

Remark. We had to introduce the assumption that the states are unitarily equivalent to
guarantee uniqueness. From a physical point of view we can justify this assumption, because
it holds automatically if the perturbation is switched on adiabatically provided the perturbation
is small enough that there is no need to control crossing of energy levels.

Lemma. Let the dynamics τt be implemented by H. Consider a perturbation of the dynamics
τλA
t where H → H +λA. Consider a state ω whose corresponding density matrix is invertible.

It is dynamically stable in the sense of Definition 1 if

(i) the state is invariant under τt ;
(ii) the corresponding density matrix ρ expressed in energy eigenfunctions |φi〉 with

eigenvalues H |φi〉 = hi |φi〉 is given by

ρ =
n∑
i

ri |φi〉〈φi |, (1)

where ri = rj if hi = hj .

Further, let the state be expressed by the density matrix ρ = e−M. Then in first order in λ

the density matrix of the perturbed state is given by

ρλA = e−M−λB, (2)

where

B =
∑
i �=j

mi − mj

hi − hj

aij |φi〉〈φj | (3)

with 〈φi |B|φj 〉 = 0 if hi = hj . The coefficients mi and aij refer to ri = e−mi and
A = ∑

ij aij |φi〉〈φj |.
Proof. Evidently [ρ,H ] = 0 and therefore also [M,H ] = 0. We write the perturbed density
matrix in first order in λ as ρλ = e−M−λB. It has to commute with H + λA and therefore
comparing the contributions in first order,

[A, e−M ] =
[
H,

∫ 1

0
dγ e−γMB e−(1−γ )M

]
=

∫ 1

0
dγ e−γM [M,A] e−(1−γ )M (4)

which reduces to [M,A] = [H,B]. Taking into account that unitary equivalence tells
ri(λ) = ri(0) this implies 〈φi |B|φi〉 = 0. Otherwise, taking into account that M and H have
common eigenvectors for these eigenvectors

(mi − mj)〈φi |A|φj 〉 = (hi − hj )〈φi |B|φj 〉. (5)

This B is only well defined iff M is degenerate in the degeneracy space of H and therefore a
function of H. �
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3. Dynamical stability for the quasilocal algebra

The quasilocal algebra A (see [3] for a precise definition) represents the observable algebra in
the thermodynamic limit. It consists of observables which are either located in finite regions or
can be approximated in norm by such observables. Space translation acts as an automorphism
σx on it, either representing discrete σx, x ∈ Zd, or continuous translations σx, x ∈ Rd ,
depending on whether the algebra represents a lattice system or a continuous system. Let us
assume that time evolution corresponds to a strongly continuous automorphism on the algebra,
i.e. with A ∈ A also τt (A) ∈ A and limt→0 ‖τt (A) − A‖ = 0. In [4] the following theorem is
proven:

Theorem 1. The following conditions are sufficient to guarantee that a state ω is a KMS state
with respect to the time evolution τt for some inverse temperature β:

(1) the function t → ‖[A, τt (B)]‖ is an L(1) function;
(2) ω is invariant under the automorphism τt , t ∈ R;
(3)

lim
t→∞(ω(A1τs(A2)τt (B1)τt+s(B2)) − ω(A1τs(A2))ω(B1τs(B2)) = 0 (6)

uniformly in s;
(4) the state ω is dynamically stable in the sense that under a local perturbation of the

dynamics to τλA
t there exists a state ωλA with

‖ω − ωλA‖ � λcA, cA ∈ R+. (7)

The proof first controls that
∫ ∞
−∞ dtω([B, τt (A)]) = 0 ∀A,B and then by varying over

B = B1τs(B2), A = A1τs(A2) shows that multitime correlations satisfy the KMS property.
This is a strong result, but unfortunately the assumptions have been verified only for a few
exceptional cases. Control of asymptotic Abelianess in models with interaction seems to be
out of reach and even the existence of the time evolution as an automorphism was shown
only for lattice systems [3] and with some manipulation on the interaction for continuous
Fermi systems [10]. This last difficulty can be overcome: as is shown in [3], the dynamical
stability can also be formulated if a time invariant state can be constructed and the time
evolution exists as automorphism on the weak closure of the algebra in the corresponding GNS
representation. Norm asymptotic Abelianess can be replaced by assuming L(1) properties of
multitime correlation functions. However, this amounts to strong asymptotic Abelianess, i.e.
it is only the topology that is weakened as it is now sufficient that

st − lim
t→∞(τt (π(A))π(B) − π(B)τt (π(A))) = 0

fast enough. But again this property cannot be proven so far in explicit examples with
interaction.

In this paper we will translate the considerations for the finite-dimensional algebra to the
quasilocal algebra. There it was crucial for our construction of the perturbed state that we
had control on the joined spectrum of the Hamiltonian and the density matrix implementing
the state. Such control is available for the quasilocal algebra too; we have to replace only the
density matrix by the modular operator and have to take into account that both the Hamiltonian
and the modular operator do not belong to the algebra but act in the Hilbert space of the GNS
representation. We collect the basic facts:

Lemma. Let ω be a time invariant state. We consider the GNS representation where
ω(A) = 〈
|π(A)|
〉. Then the time evolution can be implemented unitarily and we can

4
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choose the unitary Ut = eiHt such that Ut |
〉 = |
〉. Now assume in addition that ω is
modular, i.e. a state such that the GNS vector is separating.(This replaces the condition that
ρ is invertible for the finite case.) Then there exists the modular operator � which we write
as e−M and which is specified by the condition that

〈
|π(A†)π(A)|
〉 = 〈
|π(A) e−Mπ(A†)|
〉 ∀A ∈ A. (8)

It follows that

[eiHt , eisM ] = 0 ∀s, t. (9)

Further

H = −JHJ, M = −JMJ, (10)

where J is the modular conjugation corresponding to the modular operator e−M , i.e.

J e−M/2A|
〉 = A∗|
〉 ∀A ∈ A. (11)

Lemma. Let ω be a state with separating GNS vector. Assume that π(A)′′ is a factor.
Let ω be invariant under αs implemented by eisP and also invariant under σx where σx is
an automorphism that is strongly asymptotically Abelian and commutes with αs . Then the
spectrum of P is additive, i.e. with a, b ∈ spec(P ), also (a+b) ∈ spec(P ) and as a consequence
also na + mb, n,m ∈ N.

The assumption that ω is a factor state means that π(A)′ ∩ π(A)′′ = c1, i.e. that weak
limits of the operators either are c1 or do not commute with some other operators of the algebra.
If the algebra is a full matrix algebra as in the finite situation then every state is a factor state.
For infinite systems this is not necessarily so, but the central decomposition provides us with a
unique way to decompose into factor states. Especially extremal KMS states are factor states.
Therefore the assumption is not a severe restriction. We need it because we have to exclude
the possibility that the state is a linear superposition of KMS states with different temperature.
The proof for the additivity of the spectrum is given in [8]. It is based on the idea that we
compare the contribution with the spectrum of the vectors A|
〉, B|
〉 and Aσx(B)|
〉 for
x tending to ∞ and use the clustering of the state with respect to space translations. This
clustering is guaranteed by the assumption, that our state is a factor state. We can apply this
additivity both to M and H and as well to M + cH showing that also the joined spectrum is
additive. Thus, as a consequence of (10) we may take some (m1, h1 > 0) and (m2, h2 < 0)

in the joined spectrum. Then we choose to every ε > 0 natural numbers n1, n2 ∈ N such that
|n1h1 + n2h2| < ε. |n1m1 + n2m2| < cε for all these numbers only if H = ±cM. Especially
this implies that MH−1 is a bounded operator only if H = ±cM for some c ∈ R.

In [8] it was shown that for passive states, i.e. states that under a cyclic perturbation can
only gain energy necessarily MH � 0 and additivity of the spectrum then implies M = βH

for some β > 0. Now we will see that for states that are dynamically stable H−1M(1−|
〉〈
|)
has to be a bounded operator, replacing (5) in the finite-dimensional situation, but, as we have
just argued, this is in contradiction to the additivity of the spectrum if H does not depend
linearly on M. Equipped with these tools we can now weaken the condition (i) in theorem 1,
and together with some technical assumptions we can prove the following theorem:

Theorem 2. The following conditions are sufficient to guarantee that a state ω is a KMS state
with respect to the time evolution τt for some inverse temperature:

5
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(i) for A = A∗ ∈ πω(A)′′ the condition τt (A) = A implies A = cA1, cA ∈ R, i.e. the
von Neumann algebra that is the weak closure of the GNS representation of the algebra
corresponding to the state ω does not contain time invariant operators except multiples
of unity;

(ii) ω is a factor state over the quasilocal algebra, invariant under space translation and time
translation;

(iii) its GNS vector is separating;
(iv) it is dynamically stable in the sense that under all perturbations τλA

t of the dynamics
given by any bounded operator A = A∗ ∈ π(A)′′ there exists a perturbed state ωλA

differentiable in norm with respect to λ that is invariant under the perturbed dynamics.

Proof. The assumption that the perturbed state is differentiable in norm implies that it can be
implemented by some vector |
λA〉 in the same Hilbert space with the same representation.
Without any restriction we may choose the vector such that it belongs to the positive cone
and therefore can be approximated in analogy to (2) in first order in λ, with some operator
B = B∗ ∈ π(A)′′ as

|
λA〉 = e
−(M−λB+JλBJ)

2 |
〉 = |
〉 + λ

∫ 1
2

0
dγ e−γMB|
〉 + O(λ2). (12)

Since we have chosen |
λA〉 in the positive cone |
λA〉 = J |
λA〉. Also the unitary Ut,λA that
implements τλA

t has to satisfy Ut,λA = JUt,λAJ and therefore reads eit (H+λA−JλAJ). Invariance
of the perturbed state implies

0 = (H + λA − λJAJ)|
λA〉. (13)

Next we apply the connection between the modular conjugation and the modular automorphism
given in (11) and observe

(A − JAJ)|
〉 = (
A − e− M

2 A
)|
〉 = −

∫ 1
2

0
dγ e−γMMA|
〉.

With H |
〉 = 0 and using (9) we expand in λ and obtain∫ 1
2

0
dγ e−γMMA|
〉 =

∫ 1
2

0
dγ e−γMHB|
〉 (14)

which replaces (5). By assumption |
〉 is cyclic and separating. Further MA|
〉 =
[MA−AM]|
〉 and similarly HB|
〉 = [HB−BH ]|
〉. Both [HB−BH ] and [MA−AM]
belong to the algebra; therefore the separability implies that we have to find a B with
[M,A] = [H,B] in complete analogy to the finite-dimensional case (5). We demand that
‖
λA‖ = 1, therefore 〈
| d

dλ

λA〉|λ=0 = 0 and consequently ω(B) = 0. This fixes the

ambiguity for B, since we assumed that there do not exist time invariant operators B.
It suffices that B is affiliated to the algebra; there is no need that it is bounded, but

H−1MA|
〉 has to be well defined for all operators A. Applying the additivity of the joined
spectrum we can construct an A such that MA|
〉 is a well-defined vector that does not belong
to the domain of H−1, this construction only fails when H−1M = β. Therefore only in this
situation the assumption (iv) is met, ω has to be a temperature state to some temperature β.

This finishes the proof. �

We want to compare the result with the finite case. The assumption that the only time
invariant operators are multiples of the identity cannot be satisfied in finite-dimensional systems
where the time evolution is implemented by an inner operator. For infinite systems it holds
if the time evolution is G-Abelian [3], which includes strong asymptotic Abelianess but is a

6
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weaker condition. Especially for the XY -model this condition is satisfied. Further it can be
shown that with some additional assumptions on spatial clustering it holds for Galilei invariant
time evolution [12]. In the proof we need it as a replacement for the assumption—used in the
finite-dimensional situation—that the perturbed density matrix should be unitarily equivalent
to the initial one. The latter condition does not make sense for the infinite system where the
state does not correspond to a density matrix. Note however that for the finite system we had
to use a condition on the state, whereas for the infinite system we apply a condition on the
dynamics which in the thermodynamic limit is satisfied for realistic models.

It seems worthwhile to compare this result with the other approaches. In [8] the result is
stronger in the sense that negative temperatures are excluded. But the sign of the temperature
is related to the direction of time, which plays no role in our description. That only positive
temperatures are possible must be explained by other arguments such as stability of matter.
Another important difference is the fact that in [8] it suffices to concentrate on a dense set of
perturbations. All they have to do is to find an operator that contributes to the joined spectrum
of M and H that lies in R+×R−. We have to find operators that do not belong to the intersection
of the domains of M and H. But this intersection is dense, at least in the von Neumann algebra.
With γs being the modular automorphism take the operator A = ∫

dt dsf (t)g(s)τtγs(C). Then
the desired B = ∫

dt dsF (t)g′(s)τtγs(C) where F(t) = ∫ t

0 dsf (s). We only have to vary over
all functions such that f (t), g(s), F (t), g′(s) are L1 functions and obtain a set of operators
A with B|
〉 in the domain of H−1M, norm dense, if γs is not only an automorphism over
π(A)′′ but also over A, otherwise only weakly dense. Note that also in the version of [4] it was
sufficient to vary over a norm dense set of operators Ai as long as they satisfy the assumption
on the commutativity of Aiτs(Aj ) uniformly in s. But in addition also cluster properties of
the state had to be satisfied. In [3] they are expressed as

t → sups∈R|ω(A1τs(A2)τt (B1τs(B2))) − ω(A1τs(A2))ω(B1τs(B2))|
is an L1 function for all A1, A2, B1, B2 in a norm dense τ invariant subalgebra of A. Therefore
also in theorem 1, not only assumptions on the dynamics are important but also on the state
and its cluster properties with respect to the dynamics, not only its reaction on perturbations
of the dynamics.

It remains to wonder whether we get some deeper insight into the dynamics if we know
which operators serve to test dynamical stability and how they are related to the state that is not
dynamically stable. For quasifree time evolutions with continuous spectrum odd elements for
instance can serve to destroy dynamical stability, but if we consider only the even algebra as
relevant we have to look for other examples. Further investigations about the relation between
the invariant state and the operator that destroys stability might give some deeper insight into
the time evolution and time correlations. As an illustration we give the following example:

Example. We consider a quasifree time evolution with τt (a(f )) = a(eiht ) with h(p) a
multiplication operator in p-space. Let ω be a KMS state with respect to the automorphism
γs(a(f )) = a(eimtf ) with m(p) also a multiplication operator in p-space which for a
lattice system is [0, 1]. Obviously τ and γ commute. We perturb the dynamics with
A1 = ∫

dp dqf (p, q)a
†
paq where f has to be a L2 function. The corresponding B1

reads B1 = ∫
dp dq

m(p)−m(q)

h(p)−h(q)
f (p, q)a

†
paq and will be a bounded operator if m(p), h(p)

are smooth and monotonic functions. If however we take A2 = ∫
dp1 dp2 dq1 dq2f (p1, p2,

q1, q2)a
†
p1a

†
p2aq1aq2 then

B2 =
∫

dp1 dp2 dq1 dq2
m(p1) + m(p2) − m(q1) − m(q2)

h(p1) + h(p2) − h(q1) − h(q1)
f (p1, p2, q1, q2)a

†
p1

a†
p2

aq1aq2 .

7
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Now, even if m(p) and h(p) are smooth functions the denominator can vanish whereas the
nominator does not vanish; therefore already with an appropriate choice for f , the operator
A2 is a perturbation for which the invariant state is not stable.

Note that similar considerations occur in the framework of nonequilibrium steady states
(NESS) [13]. Here perturbations of invariant states are considered, especially of tensor
product states with different temperatures. On the basis of a scattering mechanism which is
continuous in the perturbation parameter, with some assumptions on the perturbations, such
a state is driven to a state invariant under the perturbed dynamics which is not normal with
respect to the original state. Therefore in the spirit of our investigation these perturbations
serve as test for dynamical stability.

Appendix

It remains to justify why it was desirable to extend the result of [4] to dynamics that are not
norm asymptotic Abelian by offering a concrete example that violates this assumption: we
consider the XY -model in its simplest version, variations in the parameters will not change
the main considerations. The Hamiltonian reads

H =
∑

i

(
Sx

i Sx
i+1 + S

y

i S
y

i+1 + cSz
i

)
. (A.1)

Here Si are the Pauli matrices at position i. If we consider a finite system where the sum runs
over 0 � i � N we can apply a Jordan–Wigner transformation such that the Hamiltonian can
be expressed in creation and annihilation operators

H =
∑

i

(
a
†
i+1ai + a

†
i ai+1

)

up to some boundary terms. All operators that are even products in Sx, Sy and contain
an arbitrary but finite number of Sz can be expressed in terms of creation and annihilation
operators with only a finite number of contributions from different lattice points, independent
of N. Therefore, as is discussed in detail in [6] and where it is also justified that we may ignore
the boundary terms, all these operators inherit the quasifree time evolution which is well
under control. For our choice of parameters this quasifree time evolution corresponds on the
one-particle level to a Hamiltonian with a continuous spectrum. Therefore the time evolution
is norm asymptotically Abelian on the even algebra which is the same for the creation and
annihilation operators as for the XY -model [11].

It remains to transfer the time evolution to the odd polynomials in the XY -model. It is
sufficient if we can control τt

(
Sx

0

)
since all other odd elements can be expressed as a product

of Sx
0 with an even element on which the evolution is given. Sx

0 defines an automorphism α

on the even elements

α(A) = Sx
0 ASx

0 . (A.2)

Therefore

ατtατ−t (A) = Sx
0 τt

(
Sx

0

)
Aτt

(
Sx

0

)
Sx

0 = VtAV
†
t . (A.3)

For finite times and finite NVt(N) is again an even element and can be written as

Sx
0 eiHN tSx

0 e−iHt = eiαHN t e−iHN t = eiHN t+iBt e−iHN t .

B is a local and even operator, namely for our choice of the Hamiltonian B = 2
(
S

y

0 S
y

1 +
S

y

0 S
y

−1 + Sz
0

)
and is therefore quadratic in creation and annihilation operators. Therefore

lim
N→∞

Vt(N) = Vt (A.4)

8
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exists and is an even element and for our choice of the Hamiltonian again quadratic in creation
and annihilation operators. We are interested in the asymptotic commutation relations, i.e.
whether

lim
t→∞

[
Sx

0 , τtS
x
0

] = lim
t→∞

(
Vt − V

†
t

) �= 0. (A.5)

We can consider

lim
t→∞ VtAV

†
t . (A.6)

If we choose for A a creation or annihilation operator we can calculate (20) on the one-particle
level and can apply scattering theory. The corresponding operator on the one-particle level
exists and therefore also the corresponding scattering automorphism on the algebra. However
the scattering operator on the one-particle level does not satisfy the necessary Hilbert–Schmidt
properties [14] so that the automorphism is not an inner automorphism and therefore limt→∞ Vt

does not exist. In addition we have to make sure that limt→∞ VtV
†
t �= 1 does not exist either.

But this would correspond to a trivial scattering operator on the one-particle level which does
not hold.

It follows that on the odd elements the time evolution of the XY -model is not norm
asymptotic Abelian. In addition it guarantees that no time invariant odd element exists. On
the even algebra norm asymptotic Abelianess already excluded the existence of time invariant
operators other than multiplicity of unity; therefore though the assumptions of theorem 1 are
violated, the assumptions of theorem 2 are met.
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